EECS 361 Test 2 Topics

- 1) Find the Fourier Transform of aperiodic signals
- 2) Find the Fourier Transform of periodic signals
- 3) Find the Fourier Series of a periodic signal using the relationship between Fourier Transform and Fourier Series

$$\begin{aligned} x_{p}(t) &= \sum_{k=-\infty}^{\infty} x(t - kT_{0}) = \sum_{n=-\infty}^{\infty} x_{n} e^{jn\omega_{0}t} \\ x(t) &\longleftrightarrow X(\omega) \\ x_{n} &= \frac{1}{T_{0}} X(n\omega_{0}) \end{aligned}$$

- 4) Apply the Fourier Transform theorems and properties to find $X(\omega)$
- 5) Find signal energy using Parsaval's theorem for aperiodic signals
- 6) Determine the Transfer Function of linear time invariant systems H(ω) Finding H(ω) from LCCDE
- 7) Find the amplitude and phase response of linear time invariant systems
- 8) Determine the output of a system given its input
- 9) Understand the concept of bandwidth and the inverse signal duration/bandwidth relationship
 - First zero definition
 - 3 dB definition
 - Inverse time duration-bandwidth relationship
- 10) Criteria for an ideal linear time invariant system Ideal Filters
 - a) Distortionless transmission $y(t)=Kx(t-\tau)$ $H(\omega)=Ke^{-j\omega\tau}$ for all ω .
 - b) ILPF \rightarrow H(ω)=Ke^{-j $\omega\tau$} over the signal bandwidth
 - c) IBPF, IBRF, IHPF
 - d) If B_{System}>> B_{signal} then minimal distortion, where B_{System}=system bandwidth and B_{signal}=signal bandwidth

16) Basic modulation: DSB-SC, DSB-LC (AM), and FDM: Transmitters and Receivers 17) Sampling

- a) Sampling Theorem
- b) Sampling rate $f_s > 2B$ (Nyquist sampling rate =2B)
- c) Spectrum of a sampled signal
- d) Aliasing; causes and remedies
- e) Recovery of x(t) from $x_s(t)$ using an LPF

18) Discrete Time Signals and Systems

- a) Discrete signal notation, e.g., $\{a, b, \underline{c}, d, ...\}$ then x[0]=c
- b) Discrete Time Signals x[n], u[n], δ [n], cos(Ω n+ ϕ), **p**ⁿu[n]

where Ω = the discrete-time angular frequency

- c) Discrete time LTI systems
 - Difference equations
 - ARMA format for difference equations
 - Block diagrams with delay blocks
 - Properties of Discrete Time Systems
 - o Linearity
 - Scaling
 - Additivity
 - o Time-invariance
 - Memoryless (static) vs Memory (dynamic)
 - BIBO stable
 - o Casual
 - Discrete time impulse response, h[n]
- 19) Discrete Time Convolution
- 20) z-transform
 - a) Finding X(z) given x[n]
 - b) Finding x[n] given X(z)
 - c) Finding transfer function H(z) given
 - The impulse response
 - Difference equation
 - Block diagram
 - d) Finding locations of poles and zeros of H(z)
 - e) Finding frequency response $H(e^{\Omega})$ and its relationship to the unit circle.